Cracking behavior in lead zirconate titanate films with different Zr/Ti ratios

Author:

Cheng Christopher1ORCID,Peters Travis1ORCID,Trolier-McKinstry Susan1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA

Abstract

Crack initiation stresses for different lead zirconate titanate (PZT) film compositions were investigated. PZT/Pt/TiO2/SiO2/Si stacks with 2.0 μm thick {100} oriented PZT films at the morphotropic phase boundary (MPB) showed a characteristic strength of 1137 MPa, and the film thickness served as the limiting flaw size for failure of the film/substrate stack. In contrast, for Zr/Ti ratios of 40/60 and 30/70, the characteristic stack strength increased while the Weibull modulus decreased to values typical for that of Si. This difference is believed to be due to toughening from ferroelasticity or phase switching. X-ray diffraction showed that the volume fraction of c-domains increased in Ti-rich compositions. This would allow for more switching from c to a-domains under biaxial tensile stress. Zr/Ti concentration gradients were present for all compositions, which contributed to the observation of a rhombohedral phase off the MPB. Due to the reduced tendency toward cracking, off-MPB compositions are potentially of interest in actuators, albeit with the trade-off of needing a high actuation voltage.

Funder

National Science Foundation

National Defense Science and Engineering Graduate

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Piezoelectric thin films for MEMS;Applied Physics Letters;2023-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3