Stopping power of high-density alpha-particle clusters in partially degenerated deuterium–tritium fuels

Author:

Fu Z. P.12ORCID,Zhang Z. W.12ORCID,Lin K.12ORCID,Wu D.12ORCID,Zhang J.123ORCID

Affiliation:

1. Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University 1 , Shanghai 200240, People's Republic of China

2. Zhiyuan College, Shanghai Jiao Tong University 2 , Shanghai 200240, People's Republic of China

3. Institute of Physics, Chinese Academy of Sciences 3 , Beijing 100190, People's Republic of China

Abstract

The state of burning plasma had been achieved in inertial confinement fusion (ICF), which was regarded as a great milestone for high-gain laser fusion energy. In the burning plasma, alpha particles incident on the cryogenic (warm dense) fuels cannot be simply regarded as single particles, and the new physics brought about by the density effects of alpha particles should be considered. In this work, the collective interaction between them has been considered, namely, the effect of the superposition of wake waves. The stopping power of alpha-particle clusters, i.e., the rate of energy loss per unit distance traveled has been calculated using both analytical and simulation approaches. In theory, we obtain the stopping power of alpha clusters in cryogenic (warm dense) fuel by the dielectric function method, which illustrates the importance of the effective interaction between particles. Simulation results using the LAPINS code show that the collective stopping power of the alpha cluster is indeed increased via coherent superposition of excitation fields (the excitation of high-amplitude wake waves). However, the comparison between simulation and theoretical results also illustrates a coherent–decoherent transition of the stopping power of the cluster. The initial conditions with various sizes and densities of the alpha clusters have been considered to verify the condition of decoherence transition. Our work provides a theoretical description of the transport properties of high-density alpha particles in warm dense cryogenic fuel and might give some theoretical guidance for the design of actual fusion processes.

Funder

Strategic Priority Research Program of Chinese Academy of Science

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Key Project

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3