Eliminating finite-size effects on the calculation of x-ray scattering from molecular dynamics simulations

Author:

Dohn A. O.12ORCID,Markmann V.1ORCID,Nimmrich A.1ORCID,Haldrup K.1ORCID,Møller K. B.3ORCID,Nielsen M. M.1ORCID

Affiliation:

1. Department of Physics, Technical University of Denmark 1 , 2800 Lyngby, Denmark

2. Science Institute and Faculty of Physical Sciences, VR-III, University of Iceland 2 , Reykjavík 107, Iceland

3. Department of Chemistry, Technical University of Denmark 3 , 2800 Lyngby, Denmark

Abstract

Structural studies using x-ray scattering methods for investigating molecules in solution are shifting focus toward describing the role and effects of the surrounding solvent. However, forward models based on molecular dynamics (MD) simulations to simulate structure factors and x-ray scattering from interatomic distributions such as radial distribution functions (RDFs) face limitations imposed by simulations, particularly at low values of the scattering vector q. In this work, we show how the value of the structure factor at q = 0 calculated from RDFs sampled from finite MD simulations is effectively dependent on the size of the simulation cell. To eliminate this error, we derive a new scheme to renormalize the sampled RDFs based on a model of the excluded volume of the particle-pairs they were sampled from, to emulate sampling from an infinite system. We compare this new correction method to two previous RDF-correction methods, developed for Kirkwood–Buff theory applications. We present a quantitative test to assess the reliability of the simulated low-q scattering signal and show that our RDF-correction successfully recovers the correct q = 0 limit for neat water. We investigate the effect of MD-sampling time on the RDF-corrections, before advancing to a molecular example system, comprised of a transition metal complex solvated in a series of water cells with varying densities. We show that our correction recovers the correct q = 0 behavior for all densities. Furthermore, we employ a simple continuum scattering model to dissect the total scattering signal from the solvent–solvent structural correlations in a solute–solvent model system to find two distinct contributions: a non-local density-contribution from the finite, fixed cell size in NVT simulations, and a local contribution from the solvent shell. We show how the second contribution can be approximated without also including the finite-size contribution. Finally, we provide a “best-practices”-checklist for experimentalists planning to incorporate explicit solvation MD simulations in future work, offering guidance for improving the accuracy and reliability of structural studies using x-ray scattering methods in solution.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3