Permittivity enhancement of Al2O3/ZrO2 dielectrics with the incorporation of Pt nanoparticles

Author:

Zhu Bao1ORCID,Shang Ze1,Wang Chenyan1,Wu Xiaohan1,Zhang David Wei1

Affiliation:

1. School of Microelectronics, Fudan University , Shanghai 200433, China

Abstract

Al2O3/ZrO2 (A/Z) layers with embedded Pt nanoparticles (Pt-nps) at the interface of A/Z have been used to create a dielectric film with an enhanced permittivity. The Pt-nps and dielectrics are both grown by the atomic layer deposition process, which is complementary metal–oxide–semiconductor compatible. In order to control the thickness ratio of Pt-nps in the overall dielectrics more easily, the thickness of the ZrO2 layer is changed from 12 to 30 nm with a fixed thickness of 12 nm for Al2O3 and constant growth cycles of 70 for Pt-nps. The results show that the introduction of Pt-nps is beneficial to the enhancement of the dielectric permittivity. As the thickness of ZrO2 is 30 nm, the capacitance density increases from 2.5 to 5.1 fF/μm2 with the addition of Pt-nps, i.e., a doubling of the capacitance density achieved. Additionally, the leakage current at 2 V increases from 1.1 × 10−8 to 1.5 × 10−7 A/cm2. Furthermore, the dielectric breakdown field decreases from 5.4 to 2.7 MV/cm. The electric field distribution simulation and charging–discharging test imply that interfacial polarization is built at the interface of Pt-nps and the dielectric films, which contributes to the dielectric permittivity enhancement, and local electric field increasing in the affinity of Pt-nps gives rise to the deterioration of the leakage current and breakdown electric field.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3