Size dependent electrocatalytic activities of h-BN for oxygen reduction reaction to water

Author:

Dinh Hung Cuong1ORCID,Elumalai Ganesan12ORCID,Noguchi Hidenori12ORCID,Lyalin Andrey13ORCID,Taketsugu Tetsuya234ORCID,Uosaki Kohei12ORCID

Affiliation:

1. National Institute for Materials Science (NIMS) 1 , 1-1 Namiki, Tsukuba 305-0044, Japan

2. Graduate School of Chemical Sciences and Engineering, Hokkaido University 2 , Sapporo 060-0810, Japan

3. Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University 3 , Sapporo 001-0021, Japan

4. Department of Chemistry, Faculty of Science, Hokkaido University 4 , Sapporo 060-0810, Japan

Abstract

Electrocatalytic activities for the oxygen reduction reaction (ORR) of Au electrodes modified by as prepared and size selected (0.45–1.0, 0.22–0.45, and 0.1–0.22 µm) h-BN nanosheet (BNNS), which is an insulator, were examined in O2 saturated 0.5M H2SO4 solution. The overpotential was reduced by all the BNNS modifications, and the smaller the size, the smaller the overpotential for ORR, i.e., the larger the ORR activity, in this size range. The overpotential was reduced by as much as ∼330 mV compared to a bare Au electrode by modifying the Au surface by the BNNS of the smallest size range (0.1–0.22 µm). The overpotential at this electrode was only 80 mV more than that at the Pt electrode. Both the rotation disk electrode experiments with Koutecky–Levich analysis and rotating ring disk electrode measurements showed that more than 80% of oxygen is reduced to water via the four-electron process at this electrode. These results strongly suggest and theoretical density functional theory calculations support that the ORR active sites are located at the edges of BNNS islands adsorbed on Au(111). The decrease in size of BNNS islands results in an effective increase in the number of the catalytically active sites and, hence, in the increase in the catalytic activity of the BNNS/Au(111) system for ORR.

Funder

Ministry of Education, Culture, Sports, Science and Technology

National Institute for Materials Science

Institute for Materials Research, Tohoku University

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3