Electrocatalytic Ammonia Oxidation to Nitrite and Nitrate with NiOOH‐Ni

Author:

Liu Hanwen12,Yang Cheng‐Jie3,Dong Chung‐Li3,Wang Jiashu1,Zhang Xin1,Lyalin Andrey45,Taketsugu Tetsuya46,Chen Zhiqi7,Guan Daqin2,Xu Xiaomin2,Shao Zongping2,Huang Zhenguo1ORCID

Affiliation:

1. School of Civil and Environmental Engineering University of Technology Sydney Sydney NSW 2007 Australia

2. WA School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth WA 6102 Australia

3. Department of Physics Tamkang University Tamsui 25137 Taiwan

4. Department of Chemistry Faculty of Science Hokkaido University Sapporo 060‐0810 Japan

5. Research Center for Energy and Environmental Materials (GREEN) National Institute for Materials Science Namiki 1‐1 Tsukuba 305‐0044 Japan

6. Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD) Hokkaido University Sapporo 001‐0021 Japan

7. ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility Innovation Campus University of Wollongong Wollongong NSW 2500 Australia

Abstract

AbstractAmmonia electrooxidation in aqueous solutions can be a highly energy‐efficient process in producing nitrate and nitrite while generating hydrogen under ambient conditions. However, the kinetics of this reaction are slow and the role of catalyst in facilitating ammonia electrooxidation is not well understood. In this study, a high‐performance NiOOH‐Ni catalyst is introduced for converting ammonia into nitrite with Faraday efficiency of up to 90.4% and nitrate production rate of 1 mg h−1 cm−2. By employing Operando techniques, the role of NiOOH catalyst is elucidated in the dynamic electrooxidation of ammonia. Density functional theory (DFT) calculations support experimental observations and reveal the mechanism of the electrochemical oxidation of ammonia to nitrite and nitrate. Overall, this research contributes to the development of a cost‐effective and highly efficient catalyst for large‐scale ammonia electrolysis, while shedding light on the underlying mechanism of the NiOOH catalyst in ammonia electrooxidation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3