Annealing process of Co-Fe-B based multilayers showing skyrmion Brownian motion

Author:

Goto Minori123ORCID,Ishikawa Ryo4ORCID,Nomura Hikaru123,Suzuki Yoshishige123

Affiliation:

1. Graduate School of Engineering Science, Osaka University 1 , Toyonaka, Osaka 560-8531, Japan

2. Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University 2 , Osaka 560-8531, Japan

3. Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University 3 , Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

4. ULVAC-Osaka University Joint Research Laboratory for Future Technology, Osaka University 4 , 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract

Skyrmions are topological spin textures that exhibit Brownian motion in solids. They have attracted increasing research interest in terms of realizing a device that utilizing stochastic behavior and investigating new physical phenomena. However, skyrmions that exhibit Brownian motion are sensitive to changes in magnetic properties and are easily affected by aging variation. For instance, although skyrmions appear in a sample immediately after fabrication, they sometimes disappear after few weeks. This characteristic prevents the reproducibility experiment and affects device stability. In this study, we demonstrated that aging variation can be suppressed by annealing in air for only 3 min, which is an easy and rapid method. We investigated the change in the magnetic properties by annealing and air exposure and found that the main mechanism of aging variation is oxidation of the sample surface. The magnetic properties of samples with Pt and thick SiO2 capping were analyzed, and we demonstrated that aging variation can be suppressed by avoiding surface oxidation. Our work accelerates the research of fundamental physics regarding skyrmion Brownian motion and of device applications utilizing stochastic system.

Funder

Toyota Physical and Chemical Research Institute

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hysteresis-free voltage gating of the skyrmion;Applied Physics Letters;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3