Achieving low-voltage operating high-mobility organic thin-film transistors by a multi-layered gate dielectric

Author:

Xu Qingling1ORCID,Wei Haitian1,Lin Yijie1,Yan Zhenxiang1,Wang Wei1ORCID

Affiliation:

1. College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun 130012, China

Abstract

Organic thin-film transistors (OTFTs) have attracted great attention for their inherent advantages and promising applications in emerging fields. Simultaneously realizing low-voltage operation and high-mobility in one OTFT is one of prerequisites for the commercialization, which is a huge challenge so far. An important route to address this challenge is to develop an ideal gate dielectric with a high capacitance and a low interfacial trap density at the dielectric/channel. In this Letter, we demonstrate the low-voltage operating high-mobility OTFTs by elaborately designing and processing a multi-layered gate dielectric. The gate dielectric consists of a high permittivity polymer film, a polymer buffing layer with a high surface energy, and an ultrathin long-chain alkane buffer layer. The effects of both the structures and the processes of gate dielectrics on the performances of OTFTs are investigated in detail. In addition, the relevant physical mechanisms are discussed. Finally, the optimal OTFTs exhibit high mobilities with the average and maximum values up to 5.62 and 6.74 cm2/V s, respectively, at low operating voltages below −5 V. Our findings reveal that designing and processing a reasonable multi-layered gate dielectric is a promising strategy to achieve both high-mobility and low-voltage operation in OTFTs, thereby fostering their development.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3