Study of preferential concentration in turbulent flows using combined graph theory and Voronoï analysis

Author:

Andrade Paul1ORCID,Hardalupas Yannis1,Charalampous Georgios2ORCID

Affiliation:

1. Mechanical Engineering Department, Imperial College London, London, United Kingdom

2. Mechanical Engineering Department, University of Thessaly, Volos, Greece

Abstract

Collisions between particles in turbulent flows may be enhanced by the formation of clusters due to the preferential concentration effect. However, the internal sub-structure of the clusters remains unclear. This paper describes using the “degree of a node” and the “shortest path length” from graph theory, in combination with Voronoï analysis, to gain further insight into both the structure and internal sub-structure of a cluster. This is demonstrated on experimental measurements obtained from a confined counter-flow/jet system. A minority of the particles, which comprise large clusters, are found to have a significantly large number of neighboring particles for collisions. However, particles which comprise small clusters typically have a random number of neighbors.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3