An experimental study of the water entry trajectories of truncated cone projectiles: The influence of nose parameters

Author:

Sui Yu-Tong1,Li Shuai1ORCID,Ming Fu-Ren1,Zhang A-Man1ORCID

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China

Abstract

We report on an experimental study of the trajectories of truncated cone projectiles on water entry. The water entry trajectory stability is of great significance to the motion control of projectile. In this paper, the truncated cone nose shape can be described by the area of the leading plane and the cone angle α. Two high-speed cameras are used to capture the trajectories of the projectiles and the initial stage of cavity dynamics. We reveal that the trajectory stability of a projectile is highly dependent on the wetted surface of the nose, which is determined by the location of the separation line between the surfaces of the cavity and body. The increase in the leading plane area is beneficial to the formation of a stable trajectory, in which only the leading plane is wetted. In an unstable trajectory case, the large hydrodynamic moment from the wetted surface on the side of the nose causes a significant rotation of the projectile. However, for the projectile with the cone angle [Formula: see text], though the side of the nose is fully wetted, the trajectory of the projectile turns into stable again. Results show that the attitude deflection of the projectile is determined by the cone angle of the nose. It is also found that the attitude deflection results in an irregular cavity, which further aggravates the rotation of the projectile. We quantify the relationship between the trajectory stability and two nose parameters systematically, and a phase diagram is obtained for a large parameter space. The findings in this work can be used as a reference for future designs to ensure stable trajectories on water entry.

Funder

National Natural Science Foundation of China

Heilongjiang Postdoctoral Fund

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3