Hull Slamming

Author:

Abrate Serge1

Affiliation:

1. Department of Mechanical Engineering and Energy Processes, Southern Illinois University, Carbondale, IL 62901-6603 e-mail:

Abstract

This report presents an in-depth review of the current state of knowledge on hull slamming, which is one of several types of slamming problems to be considered in the design and operation of ships. Hull slamming refers to the impact of the hull or a section of the hull as it reenters the water. It can be considered to be part of a larger class of water entry problems that include the water landing of spacecraft and solid rocket boosters, the water landing and ditching of aircraft, ballistic impacts on fuel tanks, and other applications. The problem involves the interaction of a structure with a fluid that has a free surface. Significant simplifications can be achieved by considering a two-dimensional cross section of simple shape (wedge, cone, sphere, and cylinder) and by assuming that the structure is a rigid body. The water is generally modeled as an incompressible, irrotational, inviscid fluid. Two approximate solutions developed by von Karman (1929, “The Impact on Seaplane Floats During Landing,” NACA Technical Note NACA-TN-32) and Wagner (1932, “Uber stoss und Gleitvorgange an der Oberache von Flussigkeiten,” Z. Angew. Math. Mech., 12, pp. 192–215) can be used to predict the motion of the body, the hydrodynamic force, and the pressure distribution on the wetted surface of the body. Near the intersection with the initial water surface, water piles up, a jet is formed, and the solution has a singularity in this region. It was shown that nearly half of the kinetic energy transferred from the solid to the fluid is contained in this jet, the rest being stored in the bulk of the fluid. A number of complicating factors are considered, including oblique or asymmetric impacts, elastic deformations, and more complex geometries. Other marine applications are considered as well as applications in aerospace engineering. Emphasis is placed on basic principles and analytical solutions as an introduction to this topic, but numerical approaches are needed to address practical problems, so extensive references to numerical approaches are also given.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3