Toward a machine-guided approach to energetic material discovery

Author:

Walters Dylan12ORCID,Rai Nirmal1ORCID,Sen Oishik2ORCID,Lee Perry W.1ORCID

Affiliation:

1. Los Alamos National Laboratory, P.O. Box 1663, MS P952, Los Alamos, New Mexico 87545, USA

2. Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, USA

Abstract

In this article, we trained a machine learning (ML) model to connect microstructural details of an energetic material formulation to its performance for the purpose of guiding the discovery of new explosive formulations. Our hypothesis was that the algorithm would robustly learn the training data and produce an accurate surrogate model. Specifically, the algorithm learned the relationship between details of the void size distribution (VSD), initiating shock pressure, and the energetic material performance. We used realistic constraints on the VSD and a range of cases were ingested by a physically informed reactive flow model working within a hydrodynamic solver running on high-performance computing resources. The ML algorithm produced a surrogate model that accurately predicted known test points around the parameter space. In addition to the utility of the model and the process used for its development, we noted interesting comparisons between what we, the authors—subject matter experts, would heuristically conclude from the training data and the surrogate model predictions. We detected nuanced details that were missed by the surrogate model; however, these details are not important to an energetic material formulator. We concluded that the algorithm did indeed robustly learn the training data and produce an accurate surrogate model. We further concluded that the surrogate model is a powerful tool to guide the formulator in the absence of subject matter experts and limited-access computing resources.

Funder

Los Alamos National Laboratory

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3