Multi-scale shock-to-detonation simulation of pressed energetic material: A meso-informed ignition and growth model
Author:
Affiliation:
1. Mechanical and Industrial Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
2. Air Force Research Laboratory, Munitions Directorate (AFRL/RW), Eglin AFB, Eglin, Florida 32542, USA
Funder
Air Force Office of Scientific Research
Publisher
AIP Publishing
Subject
General Physics and Astronomy
Link
http://aip.scitation.org/doi/am-pdf/10.1063/1.5046185
Reference71 articles.
1. Hot spot ignition mechanisms for explosives
2. Pore collapse in an energetic material from the micro-scale to the macro-scale
3. Shock initiation experiments with ignition and growth modeling on low density HMX
4. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds
5. Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation
Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On‐demand microwave growth of porosity within a granular composite energetic material: Void formation via a dielectric loss phase change binder additive for propellant burning rate control;Propellants, Explosives, Pyrotechnics;2024-04-19
2. Johnson–Cook yield functions for cyclotetramethylene-tetranitramine (HMX) and cyclotrimethylene-trinitramine (RDX) derived from single crystal plasticity models;Journal of Applied Physics;2024-04-08
3. Phase-Field Based Peridynamics Implementation to Model Blast-Induced Fracture in Brittle Solids;Rock Mechanics and Rock Engineering;2024-03-22
4. Multi-scale modeling of shock initiation of a pressed energetic material III: Effect of Arrhenius chemical kinetic rates on macro-scale shock sensitivity;Journal of Applied Physics;2024-02-23
5. Electromagnetically Controlled Porosity Growth in a Composite Solid Propellant via Microwave Thermostatic Binder Susceptors;AIAA SCITECH 2024 Forum;2024-01-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3