Affiliation:
1. Laboratoire de Physique des Plasmas (LPP), CNRS, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris 1 , 91120 Palaiseau, France
2. Safran Aircraft Engines, Electric Propulsion Unit 2 , 27208 Vernon, France
Abstract
In Paper I, we successfully used an external circuit to significantly damp the Breathing Mode (BM) oscillations in 2D particle-in-cell self-consistent simulations of the axial–azimuthal plane of a Hall thruster. We also introduced the two-point power spectral density reconstruction method (PSD2P) used to analyze electrostatic instabilities and generate dispersion diagrams in azimuthal and axial directions, at various times during the BM period. Here, a 3D Dispersion Relation (DR) for electrostatic modes is calculated by linearizing the continuity/momentum fluid equations for electrons and ions. We show that by taking the appropriate limits, this relation can be simplified to derive the DRs of some well-known E×B instabilities, such as the electron cyclotron drift instability and its evolution to the Ion Acoustic Wave (IAW), and the Ion Transit-Time Instability (ITTI). The PSD2P diagrams demonstrate the importance of considering the 2D nature of the IAW and ITTI, which have been previously considered to be mono-dimensional (azimuthal and axial, respectively). In particular, we show that the IAW grows near the maximum of the magnetic field and due to its axial components propagates toward both the anode and the cathode (in addition to the well-known azimuthal propagation). The resulting wavefront is, therefore, bent. By analogy to the propagation of acoustic waves in gases, it is proposed that the cause of the IAW wavefront bending is the strong electron temperature gradients in the axial direction. We also show that the ITTI has a strong positive growth rate when a small azimuthal component is present. Finally, we observe that the ITTI significantly affects the discharge current.
Funder
Grand Équipement National De Calcul Intensif
Agence Nationale de la Recherche
Safran Aircraft Engines
Association Nationale de la Recherche et de la Technologie
Reference61 articles.
1. PPSRX00 Thruster development status at Safran,2019
2. An overview of discharge plasma modeling for Hall effect thrusters;Plasma Sources Sci. Technol.,2019
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献