Acceleration of particle-in-cell simulations using sparse grid algorithms. II. Application to partially magnetized low temperature plasmas

Author:

Garrigues L.1ORCID,Chung-To-Sang M.1ORCID,Fubiani G.1ORCID,Guillet C.12ORCID,Deluzet F.2ORCID,Narski J.2ORCID

Affiliation:

1. LAPLACE, CNRS, INPT, UPS, Université de Toulouse 1 , CNRS, INPT, UPS, Toulouse, France

2. Université de Toulouse, UPS, INSA, UPS, Institut de Mathématiques de Toulouse 2 , CNRS, Institut de Mathématiques de Toulouse, UMR5219, 31062 Toulouse, France

Abstract

In Paper I [Garrigues et al., Phys. Plasmas 31, 073907 (2024)], we have extended the sparse PIC approach already used in the literature with the offset scheme to reduce the grid-based error. In this study, we demonstrate the ability of the offset sparse PIC algorithm to model partially magnetized low-temperature plasmas by reducing the grid-based error. In the context of multi-cusp magnetic field configurations, the offset scheme reduces the error of the current collected at the walls to less than 5% for more of the plasma conditions encountered in ion source applications. The formation of a double layer in the sheath region is also captured. In the context of the electron drift instability that occurs in the Hall thruster, the plasma properties as well as the ion velocity distribution function can be retrieved with a high enough precision without considering an initial regular grid with a smaller mesh resolution. The results also highlight the advantage of combining the electric potential at the nodes of the regular grid instead of directly combining the electric field from the component grids. Compared to the regular PIC algorithm, the typical speed-up factor is about three for a number of mesh nodes of 2562 and five for 5122.

Funder

Agence Nationale de la Recherche

EUROfusion

Ecole Nationale Superieure Paris Saclay - PhD Grant

Universite de Toulouse Region Midi Pyrenees - PhD Grant

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3