Neutronics simulations for the design of neutron flux monitors in SPARC

Author:

Wang X.1ORCID,Gocht R.2,Ball J.1ORCID,Mackie S.1ORCID,Panontin E.1ORCID,Tinguely R. A.1ORCID,Raj P.2ORCID,Holmes I.2ORCID,Saltos A. A.2,Johnson A.2ORCID,Grieve A.2ORCID

Affiliation:

1. Plasma Science and Fusion Center, MIT 1 , Cambridge, Massachusetts 02139, USA

2. Commonwealth Fusion System 2 , Devens, Massachusetts 01434, USA

Abstract

This paper presents the development and application of high-fidelity neutronic models of the SPARC tokamak for the design of neutron flux monitors (NFM) for application during plasma operations. NFMs measure the neutron flux in the tokamak hall, which is related to fusion power via calibration. We have explored Boron-10 gamma-compensated ionization chambers (ICs) and parallel-plate Uranium-238 fission chambers (FCs). We plan for all NFMs to be located by the wall in the tokamak hall and directly exposed to neutrons streaming through a shielded opening in a midplane port. Our simulations primarily use a constructive solid geometry-based OpenMC model based on the true SPARC geometry. The OpenMC model is benchmarked against a detailed CAD-based MCNP6 model. The B10 ICs are equipped with high-density polyethylene (HDPE) sleeves, borated HDPE housings, and borated aluminum covers to shield out scattered neutrons, optimize detector response levels, and make calibration robust against changes in the tokamak hall. The B10 neutron absorption branching ratio may cause the detectors’ responses to be non-linear to neutron flux >200 keV. However, our simulations unveil that, in the SPARC environment and with the proposed housings and sleeves, >99% of the detector responses are induced by <100 keV neutrons. U238’s insensitivity to slow neutrons makes this FC a promising candidate for direct fusion neutron measurements. Along with a borated HDPE sleeve, about 60% of the FCs’ responses are induced by direct neutrons.

Funder

Commonwealth Fusion Systems

Publisher

AIP Publishing

Reference13 articles.

1. OpenMC: A state-of-the-art Monte Carlo code for research and development;Ann. Nucl. Energy,2015

2. Overview of the SPARC tokamak;J. Plasma Phys.,2020

3. Overview of the preliminary design of SPARC’s neutron diagnostic systems

4. Predictions of core plasma performance for the SPARC tokamak;J. Plasma Phys.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3