Overview of the SPARC tokamak
-
Published:2020-09-29
Issue:5
Volume:86
Page:
-
ISSN:0022-3778
-
Container-title:Journal of Plasma Physics
-
language:en
-
Short-container-title:J. Plasma Phys.
Author:
Creely A. J.ORCID, Greenwald M. J.ORCID, Ballinger S. B., Brunner D., Canik J., Doody J., Fülöp T.ORCID, Garnier D. T., Granetz R., Gray T. K., Holland C., Howard N. T., Hughes J. W.ORCID, Irby J. H., Izzo V. A., Kramer G. J., Kuang A. Q.ORCID, LaBombard B., Lin Y.ORCID, Lipschultz B., Logan N. C., Lore J. D., Marmar E. S., Montes K., Mumgaard R. T., Paz-Soldan C.ORCID, Rea C.ORCID, Reinke M. L., Rodriguez-Fernandez P.ORCID, Särkimäki K.ORCID, Sciortino F., Scott S. D., Snicker A., Snyder P. B., Sorbom B. N., Sweeney R., Tinguely R. A., Tolman E. A., Umansky M., Vallhagen O., Varje J., Whyte D. G., Wright J. C., Wukitch S. J., Zhu J.,
Abstract
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$T), compact ($R_0 = 1.85$m,$a = 0.57$m), superconducting, D-T tokamak with the goal of producing fusion gain$Q>2$from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of$Q>2$is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of$H_{98,y2} = 1$, SPARC is projected to attain$Q \approx 11$and$P_{\textrm {fusion}} \approx 140$MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
Publisher
Cambridge University Press (CUP)
Subject
Condensed Matter Physics
Reference96 articles.
1. Alpha-particle physics in the tokamak fusion test reactor DT experiment 2. Scalings for tokamak energy confinement 3. Smaller & Sooner: Exploiting High Magnetic Fields from New Superconductors for a More Attractive Fusion Energy Development Path 4. Verdoolaege, G. , Kaye, S. M. , Angioni, C. , Kardaun, O. , Maslov, M. , Romanelli, M. , Ryter, F. & Thomsen, K. 2018 First analysis of the updated itpa global h-mode confinement database. In Proceedings of the 27th IAEA Fusion Energy Conference, p. 8. International Atomic Energy Agency. 5. Compact Ignition Tokamak (CIT) Central Solenoid Design and R&D for a “Bucked” and for a “Wedged” Machine
Cited by
234 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|