Enhancement of photoexcited carrier lifetime in an InGaAs/GaAsP wire-on-well quantum structure investigated by excitation-power-dependent photoluminescence measurements

Author:

Komaba Shintaro1ORCID,Taketa Nana1ORCID,Asami Meita2ORCID,Sugiyama Masakazu2ORCID,Ikari Tetsuo1ORCID,Fukuyama Atsuhiko1ORCID

Affiliation:

1. University of Miyazaki 1 Faculty of Engineering, , 1-1 Gakuen-Kibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan

2. Research Center for Advanced Science and Technology, The University of Tokyo 2 , 4-6-1 Komaba Meguro-ku, Tokyo 153-8904, Japan

Abstract

A wire-on-well (WoW) structure was fabricated using InGaAs/GaAs/GaAsP superlattice device growth technology. This structure modifies the local concentration of carriers in the quantum well and lengthens the carrier lifetime to increase carrier transport efficiency. However, the reason for this remains unclear. Therefore, we investigated the detailed carrier transition properties using photoluminescence (PL) and photoreflectance measurements. Regarding the PL spectra at 4 K, two characteristic peaks at 1.39 and 1.34 eV were observed. Both transitions are attributed to the recombination between the first quantum level of the electron (e1) and that of the heavy hole (hh1). We also discussed the carrier distribution in the WoW structure and found that the maximum carrier existing probabilities for e1 and hh1 are located at different positions. The less overlapping of the wavefunctions causes low transition probability and results in the observed long carrier lifetime. An additional prominent result in the WoW structure is the blue shift attributed to the 1.34 eV PL peak induced by increasing laser excitation power. We found that the blue shift occurred by the screening of the electric field caused by the compressive strain, as in the case of the quantum-confined Stark effect.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3