Simulation of millimeter-sized microwave plasma discharge generator under various conditions

Author:

Lei Fan1234ORCID,Xue Yan1ORCID,Liu Donglin23ORCID

Affiliation:

1. School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China

2. School of Aerospace Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China

3. Key Laboratory of Information and Structure Efficiency in Extreme Environment, Ministry of Education, Xi’an, Shaanxi 710071, China

4. School of Engineering and Applied Science, George Washington University, Washington, DC 20052, USA

Abstract

A microwave plasma generator (MPG) of a sub-millimeter scale might be suitable for biomedical applications. However, there are still many unknowns regarding the MPG discharge behavior at this scale and specific conditions. A two-dimensional MPG model at the millimeter scale and its simulation and relative calculation in the COMSOL Multiphysics software are presented. A MPG filled with argon and helium is simulated, respectively. The frequency of a microwave source of about 5 GHz is considered. The number density and temperature of electrons as well as chemical composition are obtained at different power and pressure conditions. The electron density peaks slightly downstream of the crossing point, and the electron density is slightly asymmetrically in the y-plane due to the fact that the electromagnetic waves are absorbed asymmetrically. The electron temperature is relatively low everywhere, in part, due to the high operating pressure. The electron temperature peaks directly underneath the wave guide where the wave is absorbed. The electron density increases with the increase in the internal pressure and the input power of the MPG, the electron temperature decreases with the increase in the internal pressure of the MPG, but the electron temperature cannot be affected by the input power change of MPG. The amount of excited Ar+ and Ars (metastable atom) increases with the increase in the input power and pressure of MPG, but the amount of excited Ar almost remained unchanged. In addition, the amount of excited He almost remained unchanged, while the amount of excited He+, Hes (metastable atom), and He2+ increased with the increase in the input power and pressure of MPG. The simulation results of this model are thus informative for understanding the physical characteristics of millimeter-sized MPG, and it will provide a solid basis for the future development of such hardware in small plasma capsules for cancer therapy.

Funder

National Natural Science Foundation of China

The Shaanxi Unversity of Science and Technology Social Science Pre-Research Fund

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3