A large-format streak tube for compressed ultrafast photography

Author:

Li Hang123,Xue Yanhua13,Tian Jinshou13ORCID,Li Shaohui13,Wang Junfeng13,Chen Ping13,Tian Liping134,He Jianping13,Zhang Minrui13,Liu Baiyu13,Gou Yongsheng13,Xu Xiangyan13,Li Yahui13,Xin Liwei13

Affiliation:

1. Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

4. School of Network and Communication Engineering, Jinling Institute of Technology, Nanjing 211169, China

Abstract

Streak cameras are powerful imaging instruments for studying ultrafast dynamics with the temporal resolution ranging from picosecond to attosecond. However, the confined detection area limits the information capacity of streak cameras, preventing them from fulfilling their potential in lidar, compressed ultrafast photography, etc. Here, we designed and manufactured a large-format streak tube with a large-size round-aperture gate, a spherical cathode, and a spherical screen, leading to an expanded detection area and a high spatial resolution. The simulation results show that the physical temporal resolution of the streak tube is better than 45 ps and the spatial resolutions are higher than 14 lp/mm in the whole area of 24 × 28 mm2 on the cathode. The experiments demonstrate the streak tube’s application potential in weak light imaging benefiting from the imaging magnification of 0.79, a photocathode radiance sensitivity of 37 mA/W, a radiant emitting gain of 11.6 at the wavelength of 500 nm, and a dynamic range higher than 512:1. Most importantly, in the photocathode area of Φ35 mm, the static spatial resolutions at the center and the edge along the slit (R = 16 mm) reach 32 and 28 lp/mm, respectively, and are higher than 10 lp/mm in the whole area of 24 × 28 mm2 on the cathode, allowing for a considerable capacity for spatial information.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Scientific Instrument Developing Project of the Chinese Academy of Sciences

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3