Four-dimensional multi-particle tracking in living cells based on lifetime imaging

Author:

Chen Danni1,Li Heng12ORCID,Yu Bin1,Qu Junle1

Affiliation:

1. Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education , Shenzhen University , Shenzhen , 518060 , China

2. Tsinghua-Berkeley Shenzhen Institute (TBSI) , Tsinghua University , Shenzhen , 518055 , China

Abstract

Abstract Research on dynamic events in living cells, such as intracellular transportation, is important for understanding cell functions. As movements occur within cells, the microenvironment of the moving vesicles or biomacromolecules may affect the behavior of them. Herein, we propose a method of simultaneously monitoring changes in spatial positions and the local environment related to the fluorescence lifetime, i.e., four-dimensional (4D) multi-particle parallel-tracking in living cells. Based on double-helix point spread function (DH-PSF) microscopy and streak camera, the method combines three-dimensional (3D) localization methods and fluorescence lifetime imaging. By modifying the PSF of the system, the 3D positions and fluorescence lifetime information for several molecules within a depth of a few microns can be acquired simultaneously from a single snapshot. The feasibility of this method is verified by simulating the real-time tracking of a single particle with a given trajectory. In addition, a proof-of-concept 4D tracking system based on the DH-PSF and streak camera was built. The experimental results show that the 3D localization and lifetime precision are σ(x, y, z) = (26 nm, 35 nm, 53 nm) and σ(τ) = 103 ps, respectively, and the effective depth of field is approximately 4 μm. Finally, intracellular endocytosis in a living cell was observed using the system, which demonstrated the successful 4D tracking of two microspheres moving within an axial depth of 4 μm. This work opens a new perspective for research of dynamic processes, by providing information about the chemical (microenvironments) and physical (positions) changes of moving targets in living cells.

Funder

National Natural Science Foundation of China

GDAS’ Project of Science and Technology Development

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Planning Project

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A guide to single-particle tracking;Nature Reviews Methods Primers;2024-09-12

2. 快速荧光寿命显微成像技术及其在活体应用的研究进展(特邀);Laser & Optoelectronics Progress;2024

3. A large-format streak tube for compressed ultrafast photography;Review of Scientific Instruments;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3