Transient simulation of the electrical hysteresis in a metal/polymer/metal nanostructure

Author:

Hao Yutong1ORCID,Lu Qiuxia1ORCID,Zhang Yalin2ORCID,Zhang Maomao1ORCID,Liu Xiaojing1,An Zhong1ORCID

Affiliation:

1. College of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University 1 , Shijiazhuang 050024, China

2. Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology 2 , Shijiazhuang 050018, China

Abstract

The time-dependent quantum transportation through a metal/polymer/metal system is theoretically investigated on the basis of a Su–Schrieffer–Heeger model combined with the hierarchical equations of motion formalism. Using a non-adiabatic dynamical method, the evolution of the electron subspace and lattice atoms with time can be obtained. It is found that the calculated transient currents vary with time and reach stable values after a response time under the bias voltages. However, the stable current as the system reaches its dynamical steady state exhibits a discrepancy between two sweep directions of the bias voltage, which results in pronounced electrical hysteresis loops in the current–voltage curve. By analyzing the evolution of instantaneous energy eigenstates, the occupation number of the instantaneous eigenstates, and the lattice of the polymer, we show that the formation of excitons and the delay of their annihilation are responsible for the hysteretic current–voltage characteristics, where electron–phonon interactions play the key factor. Furthermore, the hysteresis width and amplitude can also be modulated by the strength of the electron–phonon coupling, level-width broadening function, and temperature. We hope these results about past condition-dependent switching performance at a sweep voltage can provide further insight into some of the basic issues of interest in hysteresis processes in conducting polymers.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

The Science Foundation of Hebei Normal University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3