Permeability enhancement of Kv1.2 potassium channel by a terahertz electromagnetic field

Author:

Zhao Xiaofei1ORCID,Ding Wen1ORCID,Wang Hongguang1ORCID,Wang Yize1ORCID,Liu Yanjiang1ORCID,Li Yongdong1ORCID,Liu Chunliang1ORCID

Affiliation:

1. Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi’an Jiaotong University , Xi’an, Shaanxi 710049, China

Abstract

As biomolecules vibrate and rotate in the terahertz band, the biological effects of terahertz electromagnetic fields have drawn considerable attention from the physiological and medical communities. Ion channels are the basis of biological electrical signals, so studying the effect of terahertz electromagnetic fields on ion channels is significant. In this paper, the effect of a terahertz electromagnetic field with three different frequencies, 6, 15, and 25 THz, on the Kv1.2 potassium ion channel was investigated by molecular dynamics simulations. The results show that an electromagnetic field with a 15 THz frequency can significantly enhance the permeability of the Kv1.2 potassium ion channel, which is 1.7 times higher than without an applied electric field. By analyzing the behavior of water molecules, it is found that the electromagnetic field with the 15 THz frequency shortens the duration of frozen and relaxation processes when potassium ions pass through the channel, increases the proportion of the direct knock-on mode, and, thus, enhances the permeability of the Kv1.2 potassium ion channel.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3