Experimental base flow modification on a swept wing using plasma forcing

Author:

Peng K.1ORCID,Arkesteijn J. P. W.1ORCID,Avallone F.1ORCID,Kotsonis M.1ORCID

Affiliation:

1. FPT Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands

Abstract

This work experimentally investigates plasma actuator (PA) forcing effects on the base flow and developing crossflow (CF) instabilities in a swept wing boundary layer. Spanwise-invariant plasma forcing near the leading edge is configured according to the base flow modification (BFM) strategy. A simplified predictive model is constructed by coupling an experimentally derived plasma body force and a linear stability theory and is used to infer the stability characteristics of the boundary layer subject to BFM. The base flow velocity is measured by stereo particle image velocimetry (PIV) at various PA operating conditions. Similarly, the developing CF instabilities, triggered through discrete roughness elements, are quantified by planar-PIV. The results demonstrate that a PA can reduce the boundary layer CF component, whereas the control authority shows a high dependence on the momentum coefficient. The dissimilar reduction between the streamline-aligned velocity and CF component leads to a local re-orientation of the base flow. Spanwise spectral analysis of the time-averaged flow indicates that stationary CF instabilities can be favorably manipulated whereas the BFM reduction effects depend on the corresponding initial amplitudes of stationary instabilities. An evident spanwise shift in the trajectory of stationary CF vortices is observed, which appears to result from the local alteration of the boundary layer stability due to the PA forcing. Despite the overall reduction in the amplitude of stationary CF instabilities, unsteady disturbances are found to be enhanced by the PA forcing. The current results shed light on the underlying principles of BFM-based PA operation in the context of laminar flow control.

Funder

European Research Council

China Scholarship Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3