Affiliation:
1. FPT Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft 2629HS, The Netherlands
Abstract
This work investigates the response of a transitional boundary layer to spanwise-invariant dielectric barrier discharge plasma actuator (PA) forcing on a [Formula: see text] swept wing at a chord Reynolds number of [Formula: see text]. Two important parameters of the PA operation are scrutinized, namely, the forcing frequency and the streamwise location of forcing. An array of passive discrete roughness elements is installed near the leading edge to promote and condition a set of critical stationary crossflow (CF) instability modes. Numerical solutions of the boundary layer equations and linear stability theory are used in combination with the experimental pressure distribution to provide predictions of critical stationary and traveling CF instabilities. The laminar–turbulent transition front is visualized and quantified by means of infrared thermography. Measurements of velocity fields are performed using hotwire anemometry scans at specific chordwise locations. The results demonstrate the inherent introduction of unsteady velocity disturbances by the plasma forcing. It is shown that, depending on actuator frequency and location, these disturbances can evolve into typical CF instabilities. Positive traveling low-frequency type III modes are generally amplified by PA in all tested cases, while the occurrence of negative traveling high-frequency type I secondary modes is favored when PA is operating at high frequency and at relatively downstream locations, with respect to the leading edge.
Funder
European Research Council
China Scholarship Council
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献