The effects of pulsed blowing jets on power gain of vortex-induced vibrations of a circular cylinder

Author:

Guo Yujie1ORCID,Huang Zhengui1ORCID,Zheng Chun2ORCID,Chen Zhihua1

Affiliation:

1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology 1 , Nanjing 210094, China

2. School of Mechanical Engineering, Nanjing University of Science and Technology 2 , Nanjing 210094, China

Abstract

To enhance the power gain of vortex-induced vibration of a circular cylinder, the active control method of pulsed blowing jets located at θ = 90° is utilized to intensify its oscillation with the two-dimensional simulation of Reynolds-averaged Navier–Stokes at 2.0 × 104 ≤ Re ≤ 9.6 × 104. Different from traditional continuous jets, the blowing jets used in this paper start once the cylinder moves to the upper limited position and last for a certain duration. Based on the combination of nine momentum coefficients and four pulse durations of the jets, the oscillation responses of the cylinder at a series of reduced velocities are calculated and distinct responses are observed in three branches. In the initial branch (U* ≤ 4.27), no matter what the values of Cμ and n are, the vortex patterns keep 2S accompanied by the amplitude ratios vibrating around the benchmarks. In the fore part of the upper branch (4.27 < U* ≤ 6.17), as Cμ ≤ 0.1005, the control effect is similar to that at U* ≤ 4.27; as Cμ > 0.1005, both slight enhancement and suppression in amplitude ratios are observed, as well as the small values of power gain ratios. In the rear part of the upper branch and lower branch (U* > 6.17), the enlarged disturbance of the jets to wake results in enhanced amplitude ratios for most cases. Galloping is observed at n = 1/4 and 1/2 with a maximum amplitude ratio 13 times the benchmark, except for some suppressed cases at Cμ > 0.1005, n = 1/16, and 1/8. Though large amplitude ratios are achieved, considering more energy consumed as Cμ increases, the better control strategy with η ranging from 5.45% to 19.78% falls in U* > 6.17 and Cμ < 0.1005.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3