Abstract
A circular cylinder attached by a rigid splitter plate of different lengths was tested to examine its effects on the control of flow-induced vibration. Tests were carried out in a closed-loop water channel. A cylinder of diameter D = 20 mm and a mass ratio m* ≈ 50 was installed to oscillate in the transverse direction. A wide range of splitter length was considered, i.e., L/D = 0–3.5, at a range of reduced velocity Ur = 1–25 and the Reynolds number Re = 800–11 000. Numerical simulations were also conducted to reveal the flow structures associated with the vibration modes observed in the experiment. It is found that, as L/D increases from 0 to 0.25, the peak value of cylinder oscillation amplitude increases and appears at higher reduced velocities. When the splitter length continues to rise, galloping-type oscillations occur at L/D = 0.5 and 0.75. The transition stage has been found at L/D = 1.0. Oscillation is then significantly suppressed when the splitter length is larger than L/D = 1.5.
Funder
Research Grants Council of Hong Kong under General Research Fund
Natural Science Foundation of Guangdong Province
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献