A magnetic actuation scheme for nano-kirigami metasurfaces with reconfigurable circular dichroism

Author:

Chen Yingying1ORCID,Liang Qinghua1,Ji Chang-Yin1,Liu Xing1,Wang Rongyao12,Li Jiafang12ORCID

Affiliation:

1. Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China

2. Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China

Abstract

Nano-kirigami-based deformable metasurfaces offer unique advantages in the dynamic modulation of optical fields and the realization of reconfigurable micro-/nano-optoelectronic devices. Here, we theoretically propose and numerically demonstrate a magnetically actuated deformation scheme for 2D nano-kirigami structures, which can be accurately and continuously transformed from 2D to 3D. Based on the traditional pinwheel structure, an Fe/Au bilayer anti-pinwheel nanostructure is designed and dynamically transformed by employing magnetic attraction in numerical simulations, in which the ratio between deformation height and lateral period could reach up to 0.563. More importantly, it is found that the anti-pinwheel structure has superior circular dichroism (CD), whose maximum CD response could reach 7 times that of the corresponding pinwheel structure. Further analysis of the scattering power of multipole moments reveals that such a superior CD response is found to be induced by the handedness-dependent excitation of a toroidal dipole moment. Such a straightforward magnetically actuated deformation and novel anti-pinwheel structure provides useful methodologies to explore and realize deformable metamaterials and their dynamic regulation capabilities, as well as applications in chiral spectroscopy, optical reconfiguration, optical sensing, etc.

Funder

National Natural Science Foundation of China

Science and Technology Project of Guangdong

Natural Science Foundation of Beijing Municipality

Beijing Municipal Science & Technology Commission Administrative Commission of Zhongguancun Science Park

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3