A model for the prediction of the shielding effectiveness of cylindrical enclosure

Author:

Chen Kaibai1ORCID,Gao Min1,Zhou Xiaodong2ORCID

Affiliation:

1. Department of Missile Engineering, Army Engineering University, Shijiazhuang Campus, Shijiazhuang 050003, China

2. Department of Ammunition Engineering, Army Engineering University, Shijiazhuang Campus, Shijiazhuang 050003, China

Abstract

This paper presents a model to predict the shielding effectiveness (SE) and resonant modes of cylindrical enclosure with apertures or dielectric substrate. In this model, the Robinson equivalent circuit model (RECM) is introduced to deal with aperture impedance, and the extended form of the Baum–Liu–Tesche equation is deduced to calculate the induced voltage in the enclosure. The electromagnetic topology (EMT) model is established to analyze the process of energy transmission inside the enclosure. The energy propagation coefficient matrix and the scattering coefficient matrix are calculated to deal with the SE results of the observation point. To quantify the efficiency of the proposed model, the calculation results are compared with the full-wave transmission line matrix method (TLM) and RECM through the Fréchet distance. The comparison results show that the accuracy of the proposed model is better over a wide frequency range compared with RECM, and meanwhile, it consumes less run time and fewer CPU resources than traditional numerical methods. The validity of the presented model is verified by TLM.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3