Analysis of Intentional Electromagnetic Interference on GENEC Model Using Cylindrical Mode Matching

Author:

Kang Wonjune1ORCID,Kang No-Weon2ORCID,Lee Woosang3,Cheon Changyul4,Chung Young-Seek1

Affiliation:

1. Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea

2. Division of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea

3. Agency for Defense Development, Daejeon 34186, Republic of Korea

4. School of Electrical and Computer Engineering, University of Seoul, Seoul 02504, Republic of Korea

Abstract

In recent times, due to the high operating frequency and low operating voltage of modern electronic devices, intended electromagnetic interference (IEMI) has been the cause of increasing damage. In particular, targets with precision electronics such as aircrafts or missiles have shown that a high-power microwave (HPM) may cause malfunction or partial destruction of the GPS or the avionic control system. Analysis of the effects of IEMI requires electromagnetic numerical analyses. However, there are limitations to conventional numerical techniques, such as the finite element method, method of moment, or finite difference time domain method, due to the complexity and large electrical length of a real target system. In this paper, we proposed a new cylindrical mode matching (CMM) technique to analyze IEMI of the generic missile (GENEC) model, which is a hollow metal cylinder with multiple apertures. Using the CMM, we can quickly analyze the effect of the IEMI inside the GENEC model from 1.7 to 2.5 GHz. The results were compared with those of the measurements and, for verification, with the FEKO, a commercial software program developed by Altair Engineering, and showed good agreement. In this paper, the electro-optic (EO) probe was used to measure the electric field inside the GENEC model.

Funder

Agency for Defense development (ADD), Korea

Research Grant of Kwangwoon University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3