On learning latent dynamics of the AUG plasma state

Author:

Kit A.12ORCID,Järvinen A. E.2ORCID,Poels Y. R. J.34ORCID,Wiesen S.5ORCID,Menkovski V.3ORCID,Fischer R.6,Dunne M.6ORCID,

Affiliation:

1. University of Helsinki 1 , FI-00014 Helsinki, Finland

2. VTT Technical Research Centre of Finland 2 , FI-02044 VTT, Finland

3. Eindhoven University of Technology, Mathematics and Computer Science 3 , NL-5600MB Eindhoven, The Netherlands

4. École Polytechnique Fédérale de Lausanne, Swiss Plasma Center 4 , CH-1015 Lausanne, Switzerland

5. Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik 5 , DE-52425 Jülich, Germany

6. Max-Planck-Institut für Plasmaphysik 6 , D-85748 Garching, Germany

Abstract

In this work, we demonstrate the utility of state representation learning applied to modeling the time evolution of electron density and temperature profiles at ASDEX-Upgrade (AUG). The proposed model is a deep neural network, which learns to map the high dimensional profile observations to a lower dimensional state. The mapped states, alongside the original profile's corresponding machine parameters, are used to learn a forward model to propagate the state in time. We show that this approach is able to predict AUG discharges using only a selected set of machine parameters. The state is then further conditioned to encode information about the confinement regime, which yields a simple baseline linear classifier, while still retaining the information needed to predict the evolution of profiles. We, then, discuss the potential use cases and limitations of state representation learning algorithms applied to fusion devices.

Funder

Euratom Research and Training Programme

Research Council of Finland

Publisher

AIP Publishing

Reference23 articles.

1. State representation learning for control: An overview;Neural Networks,2018

2. D. Hafner , J.Pasukonis, J.Ba, and T.Lillicrap, “ Mastering diverse domains through world models,” arXiv:2301.04104 (2023).

3. A general infrastructure for data-driven control design and implementation in tokamaks;J. Plasma Phys.,2023

4. Developing deep learning algorithms for inferring upstream separatrix density at JET;Nucl. Mater. Energy,2023

5. Data-driven model for divertor plasma detachment prediction;J. Plasma Phys.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3