A machine learning-based prediction of crystal orientations for multicrystalline materials

Author:

Hara Kyoka1ORCID,Kojima Takuto2ORCID,Kutsukake Kentaro3ORCID,Kudo Hiroaki2ORCID,Usami Noritaka1ORCID

Affiliation:

1. Graduate School of Engineering, Nagoya University 1 , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

2. Graduate School of Informatics, Nagoya University 2 , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan

3. Center for Advanced Intelligence Project, RIKEN 3 , 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

Abstract

We established a rapid, low-cost, and accurate technique to measure crystallographic orientations in multicrystalline materials by optical images and machine learning. A long short-term memory neural network was trained with pairs of light reflection patterns and the correct orientations of each grain, successfully predicting orientation with an error median of 8.61°. The model was improved by diverse data taken from various incident light angles and by data augmentation. When trained on different incident angles, the model was capable of estimating different orientations. This is related to the geometrical configuration of the incident light angles and surface facets of the crystal. The failure in certain orientations is thought to be complemented by supplementary data taken from different incident angles. Combining data from multiple incident angles, we acquired an error median of 4.35°. Data augmentation was successfully performed, reducing error by an additional 35%. This technique can provide the crystallographic orientations of a 15 × 15 cm2 sized wafer in less than 8 min, while baseline techniques such as electron backscatter diffraction and Laue scanner may take more than 10 h. The rapid and accurate measurement can accelerate data collection for full-sized ingots, helping us gain a comprehensive understanding of crystal growth. We believe that our technique will contribute to controlling crystalline structure for the fabrication of high-performance materials.

Funder

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3