3D CNN and grad-CAM based visualization for predicting generation of dislocation clusters in multicrystalline silicon

Author:

Hara Kyoka1ORCID,Kojima Takuto2ORCID,Kutsukake Kentaro3ORCID,Kudo Hiroaki2ORCID,Usami Noritaka1ORCID

Affiliation:

1. Graduate School of Engineering, Nagoya University 1 , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

2. Graduate School of Informatics, Nagoya University 2 , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan

3. Center for Advanced Intelligence Project 3 , RIKEN, 1-4-1, Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

Abstract

We propose a machine learning-based technique to address the crystallographic characteristics responsible for the generation of crystal defects. A convolutional neural network was trained with pairs of optical images that display the characteristics of the crystal and photoluminescence images that show the distributions of crystal defects. The model was trained to predict the existence of crystal defects at the center pixel of the given image from its optical features. Prediction accuracy and separability were enhanced by feeding three-dimensional data and data augmentation. The prediction was successful with a high area under the curve of over 0.9 in a receiver operating characteristic curve. Likelihood maps showing the distributions of the predicted defects are in good resemblance with the correct distributions. Using the trained model, we visualized the most important regions to the predicted class by gradient-based class activation mapping. The extracted regions were found to contain mostly particular grains where the grain boundaries changed greatly due to crystal growth and clusters of small grains. This technique is beneficial in providing a rapid and statistical analysis of various crystal characteristics because the features of optical images are often complex and difficult to interpret. The interpretations can help us understand the physics of crystal growth and the effects of crystallographic characteristics on the generation of detrimental defects. We believe that this technique will contribute to the development of a better fabrication process for high-performance multicrystalline materials.

Funder

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3