A non-self-consistent tight-binding electronic structure potential in a polarized double-ζ basis set for all spd-block elements up to Z = 86

Author:

Grimme Stefan1ORCID,Müller Marcel1ORCID,Hansen Andreas1ORCID

Affiliation:

1. Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn , Beringstr. 4, 53115 Bonn, Germany

Abstract

Existing semiempirical molecular orbital methods suffer from the usually minimal atomic-orbital (AO) basis set used to simplify the calculations. Here, a completely new and consistently parameterized tight-binding electronic structure Hamiltonian evaluated in a deeply contracted, properly polarized valence double-zeta basis set (vDZP) is described. The inner-shell electrons are accounted for by standard, large-core effective potentials and approximations to them. The primary target of this so-called density matrix tight-binding method is to reproduce the one-particle density matrix P of a molecular ωB97X-V range-separated hybrid density functional theory (DFT) calculation in exactly the same basis set. Additional properties considered are orbital energies, dipole polarizabilities and dipole moments, and dipole polarizability derivatives. The key features of the method are as follows: (a) it is non-self-consistent with an overall fixed number of only three required matrix diagonalizations; (b) only AO overlap integrals are needed to construct the effective Hamiltonian matrix; (c) new P-dependent terms emulating non-local exchange are included; and (d) only element-specific empirical parameters (about 50 per element) need to be determined. The method globally achieves a high accuracy for the target properties at a speedup compared to the ωB97X-V/vDZP reference of about 3–4 orders of magnitude. It performs robustly for difficult transition metal complexes, for highly charged or zwitterionic systems, and for chemically unusual bonding situations, indicating a generally robust approximation of the (self-consistent) Kohn–Sham potential. As an example application, the vibrational Raman spectrum of an entire protein with 327 atoms with respect to the DFT reference calculation is shown. This method may be used out-of-the-box to generate molecular/atomic features for machine learning applications or as the basis for accurate high-speed DFT methods.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3