An atom-in-molecule adaptive polarized valence single-ζ atomic orbital basis for electronic structure calculations

Author:

Müller Marcel1ORCID,Hansen Andreas1ORCID,Grimme Stefan1ORCID

Affiliation:

1. Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn , Beringstraße 4, 53115 Bonn, Germany

Abstract

Many low-cost or semiempirical quantum mechanical-based electronic structure methods suffer from the use of unpolarized minimal atomic orbital (AO) basis sets. In this work, we overcome this limitation by a fully DFT variationally optimized, adaptive minimal basis set consistently available for the elements up to radon (Z = 86). The new key feature is to make the linear coefficients of the primitive Gaussians in a contracted AO dependent on the effective atomic charge of the atom in the molecule, i.e., each symmetry-unique atom obtains its “own” specifically adapted basis functions. In this way, the physically important “breathing” of the AOs in a molecule with (a) atomic charge (expansion/contraction for anionic/cationic states) and (b) the number of close-lying bonded neighbor atoms is accounted for. The required atomic charges are obtained from a specially developed extended Hückel type Hamiltonian and the coordination numbers from the molecule geometry. Proper analytical derivatives of the resulting adaptive basis functions can easily be derived. Moreover, the basis functions are electric field-dependent, thus improving the description of, e.g., dipole moments and polarizabilities. The new basis set termed q-vSZP (charge dependent valence single-ζ, polarized) is thoroughly benchmarked for atomic/molecular and thermochemical properties compared to standard minimal and double-ζ basis sets at the DFT level with the accurate ωB97X-D4 functional. It is shown that q-vSZP is clearly superior to existing minimal basis sets, often reaching double-ζ quality or even better results. We expect it to be the optimal choice in future semiempirical quantum mechanical methods.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3