Characterization of 3-Dimensional Printing and Casting Materials for use in Computed Tomography and X-ray Imaging Phantoms

Author:

Yunker B. E.12,Holmgren A.3,Stupic K. F.1,Wagner J. L.2,Huddle S.2,Shandas R.2,Weir R. F.2,Keenan K. E.1,Garboczi E.3,Russek S. E.1

Affiliation:

1. National Institute of Standards and Technology, Physical Measurement Laboratory, Applied Physics Division, Boulder, CO 80305, USA

2. University of Colorado-Denver/Anschutz, Aurora, CO 80045, USA

3. National Institute of Standards and Technology, Material Measurement Laboratory, Applied Chemicals and Materials Division, Boulder, CO 80305, USA

Abstract

Imaging phantoms are used to calibrate and validate the performance of medical computed tomography (CT) systems. Many new materials developed for three-dimensional (3D) printing processes may be useful in the direct printing or casting of biomimetic and geometrically accurate CT and X-ray phantoms. The X-ray linear attenuation coefficients of polymer samples were measured to discover materials for use as tissue mimics in phantoms. This study included a cohort of polymer compounds that were tested in cured form. The cohort consisted of 101 standardized polymer samples fabricated from: two-part silicones and polyurethanes used in commercial casting processes; one-part optically cured polyurethanes used in 3D printing; and fused deposition thermoplastics used in 3D printing. The testing was performed with a commercial micro-CT imaging system from 40 kVp to 140 kVp. The X-ray linear coefficients of the samples and human tissues were plotted with error bars to allow the reader to identify suitable mimics. The X-ray linear attenuation coefficients of the tested material samples spanned a wide range of values, with a small number of them overlapping established human tissue mimic values. Twenty 3D printer materials and one castable polyurethane tracked nylon and polymethyl methacrylate (PMMA) as established X-ray mimics for fat. Five 3D printer materials tracked water as an established X-ray mimic for muscle.

Funder

Material Measurement Laboratory

Publisher

National Institute of Standards and Technology (NIST)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3