Impact of deforestation on radiative and thermal regimes of the territory of Ukraine on the base of global climate models data

Author:

Pysarenko L. A.,Krakovska S. V.

Abstract

This paper is dedicated to the influence of partial deforestation with using global retrospective modelling data from The Land Use Model Intercomparison Project (LUMIP) for the territory of Ukraine. This experiment aims to global gradual deforestation and has two phases. The first phase, defined as the pre-industrial period (1850—1899) with constant unchangeable anthropogenic impact. For this period deforestation modelled with further replacement with grass cover with a linear trend 400000 km2/yr or 20 million km2 per 50 years in general. The second phase is next 30 years with no significant changes in forest cover (1900—1929). For conducting this research the data of several global climate models were applied. The results of analysis have demonstrated that a partial deforestation with grass substitution influences the surface reflectivity or albedo and redistribution of shortwave radiative fluxes. In turn, it provokes changes in thermal regime. It was found that the most significant changes in surface reflectivity and the strongest correlation coefficients between albedo and deforestation are in the winter season due to the presence of snow cover. As a result, statistical significant increase of albedo is with maximum values up to 24 %/50 years in some grids in winter. Then in the summer season maximal changes are up to 2.7 %/50 years due to small differences between forest and grass albedos. As a consequence, changes in albedo cause changes in surface and air temperature regimes. Strong dependencies were found in winter between changes in albedo and temperatures with maximum temperature decrease 2.5…2.0 %/50 years. In warm season correlations are weaker in comparison to cold season, but nevertheless, temperatures decrease also take place with maximum values 2.0…1.5 %/50 years. The analysis between deforestation and daily air temperature range has shown that particularly in winter season there is an increase of 0.5...1.5 %/50 years, whereas such tendency is not observed in warm season. Calculations of year air temperature range demonstrated controversial results among climate models, as follows it is hard to make a conclusion about the contribution of forest cover reduction to changes in this index. It was revealed, that global climate models with higher resolution are more sensitive to changes in albedo and, as a consequence to other characteristics than models with coarse ones. It should be noticed that obtained results concern pre-industrial period with minimal anthropogenic impact, when observed a stable snow cover in winter in Ukraine. In the current climate change with significant warming and reduction of snow season duration deforestation can have opposite effects on radiative and thermal regimes that require further studying.

Publisher

Institute of Geophysics of the National Academy of Sciences of Ukraine by S.I. Subbotin name

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3