Abstract
We consider finite class of functions defined by parameters $e_0,e_1,e_2$ belonging to the set $A=\{0,1\}$. The digits of the continued fraction $A_2$-representation of the argument
$$x=\frac{1}{\alpha_1+\frac{1}{\alpha_2+_{\ddots}}}\equiv \Delta^A_{a_1...a_n...},$$
where $\alpha_n\in \{\frac{1}{2};1\}$, $a_n=2\alpha_n-1$, $n\in N$, and the values of the function are in a recursive dependence, namely:
$$f(x=\Delta^A_{a_1...a_{2n}...})=\Delta^A_{b_1b_2...b_n...},$$
\begin{equation*}
b_1=\begin{cases}
e_0 &\mbox{ if } (a_1,a_2)=(e_1,e_2),\\
1-e_0 &\mbox{ if } (a_1,a_2)\neq(e_1,e_2),
\end{cases}
\end{equation*}
\begin{equation*}
b_{k+1}=\begin{cases}
b_k &\mbox{ if } (a_{2k+1},a_{2k+2})\neq(a_{2k-1},a_{2k}),\\
1-b_k &\mbox{ if } (a_{2k+1},a_{2k+2})=(a_{2k-1},a_{2k}).
\end{cases}
\end{equation*}
In the article, we justify the well-defined of the function, continuous and nowhere monotonic function. The variational properties of the function were studied and the unbounded variation was proved.
Publisher
Yuriy Fedkovych Chernivtsi National University
Subject
Computer Science Applications,History,Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献