Abstract
We study structural and variational properties of one continued class of nowhere monotonic continuous functions unbounded variational, defined equality
\[f(x=\Delta^{A_3}_{\alpha_1\alpha_2...\alpha_n...})=\Delta^{A_2}_{\beta_1\beta_2...\beta_n...},\]
\[\beta_1=\begin{cases}
1 & \mbox{if } \alpha_1=2,\\
0 & \mbox{if } \alpha_1\neq 2,
\end{cases}\;\;\;\;
\beta_{n+1}=\begin{cases}
\beta_{n} & \mbox{if } \alpha_n+\alpha_{n+1}\neq 2,\\
1-\beta_{n} & \mbox{if } \alpha_n+\alpha_{n+1}=2,
\end{cases} \alpha_n \in \{0,1,2\}, n\in N,\]
argument and values of which presented by form continued fraction. Elements $a_n$ of continued fraction $[0;a_1,a_2,...,a_n,...]$, consist to three- and two-symbol sets ($A_e=\{e_0,e_1,e_2\}$ $A_{\tau}=\{\tau_0,\tau_1\}$) corresponding. The function is analog of Bush-Wunderlich function and Tribin-function.
Publisher
Yuriy Fedkovych Chernivtsi National University