Novel Role for CFTR in Fluid Absorption from the Distal Airspaces of the Lung

Author:

Fang X.1,Fukuda N.1,Barbry P.1,Sartori C.1,Verkman A.S.1,Matthay M.A.1

Affiliation:

1. Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, CA 94143

Abstract

The active absorption of fluid from the airspaces of the lung is important for the resolution of clinical pulmonary edema. Although ENaC channels provide a major route for Na+ absorption, the route of Cl− transport has been unclear. We applied a series of complementary approaches to define the role of Cl− transport in fluid clearance in the distal airspaces of the intact mouse lung, using wild-type and cystic fibrosis ΔF508 mice. Initial studies in wild-type mice showed marked inhibition of fluid clearance by Cl− channel inhibitors and Cl− ion substitution, providing evidence for a transcellular route for Cl− transport. In response to cAMP stimulation by isoproterenol, clearance was inhibited by the CFTR inhibitor glibenclamide in both wild-type mice and the normal human lung. Although isoproterenol markedly increased fluid absorption in wild-type mice, there was no effect in ΔF508 mice. Radioisotopic clearance studies done at 23°C (to block active fluid absorption) showed ∼20% clearance of 22Na in 30 min both without and with isoproterenol. However, the clearance of 36Cl was increased by 47% by isoproterenol in wild-type mice but was not changed in ΔF508 mice, providing independent evidence for involvement of CFTR in cAMP-stimulated Cl− transport. Further, CFTR played a major role in fluid clearance in a mouse model of acute volume-overload pulmonary edema. After infusion of saline (40% body weight), the lung wet-to-dry weight ratio increased by 28% in wild-type versus 64% in ΔF508 mice. These results provide direct evidence for a functionally important role for CFTR in the distal airspaces of the lung.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 172 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3