Functional Roles of Charged Amino Acid Residues on the Wall of the Cytoplasmic Pore of Kir2.1

Author:

Fujiwara Yuichiro1,Kubo Yoshihiro123

Affiliation:

1. Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Aichi 444-8585, Japan

2. COE Program for Brain Integration and its Disorders, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, Tokyo 113-8519, Japan

3. SORST, Japan Science and Technology Corporation, Saitama 332-0012, Japan

Abstract

It is known that rectification of currents through the inward rectifier K+ channel (Kir) is mainly due to blockade of the outward current by cytoplasmic Mg2+ and polyamines. Analyses of the crystal structure of the cytoplasmic region of Kir2.1 have revealed the presence of both negatively (E224, D255, D259, and E299) and positively (R228 and R260) charged residues on the wall of the cytoplasmic pore of Kir2.1, but the detail is not known about the contribution of these charged residues, the positive charges in particular, to the inward rectification. We therefore analyzed the functional significance of these charged amino acids using single/double point mutants in order to better understand the structure-based mechanism underlying inward rectification of Kir2.1 currents. As a first step, we used two-electrode voltage clamp to examine inward rectification in systematically prepared mutants in which one or two negatively or positively charged amino acids were neutralized by substitution. We found that the intensity of the inward rectification tended to be determined by the net negative charge within the cytoplasmic pore. We then used inside-out excised patch clamp recording to analyze the effect of the mutations on blockade by intracellular blockers and on K+ permeation. We observed that a decrease in the net negative charge within the cytoplasmic pore reduced both the susceptibility of the channel to blockade by Mg2+ or spermine and the voltage dependence of the blockade. It also reduced K+ permeation; i.e., it decreased single channel conductance, increased open-channel noise, and strengthened the intrinsic inward rectification in the total absence of cytoplasmic blockers. Taken together, these data suggest that the negatively charged cytoplasmic pore of Kir electrostatically gathers cations such as Mg2+, spermine, and K+ so that the transmembrane pore is sufficiently filled with K+ ions, which enables strong voltage-dependent blockade with adequate outward K+ conductance.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3