Probing the Geometry of the Inner Vestibule of BK Channels with Sugars

Author:

Brelidze Tinatin I.1,Magleby Karl L.1

Affiliation:

1. Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136

Abstract

The geometry of the inner vestibule of BK channels was probed by examining the effects of different sugars in the intracellular solution on single-channel current amplitude (unitary current). Glycerol, glucose, and sucrose decreased unitary current through BK channels in a concentration- and size-dependent manner, in the order sucrose > glucose > glycerol, with outward currents being reduced more than inward currents. The fractional decrease of outward current was more directly related to the fractional hydrodynamic volume occupied by the sugars than to changes in osmolality. For concentrations of sugars ≤1 M, the i/V plots for outward currents in the presence and absence of sugar superimposed after scaling, and increasing K+i from 150 mM to 2 M increased the magnitudes of the i/V plots with little effect on the shape of the scaled curves. These observations suggest that sugars ≤1 M reduce outward currents mainly by entering the inner vestibule and reducing the movement of K+ through the vestibule, rather than by limiting diffusion-controlled access of K+ to the vestibule. With 2 M sucrose, the movement of K+ into the inner vestibule became diffusion limited for 150 mM K+i and voltages >+100 mV. Increasing K+i then relieved the diffusion limitation. An estimate of the capture radius based on the 5 pA diffusion-limited current for channels without the ring of negative charge at the entrance to the inner vestibule was 2.2 Å. Adding the radius of a hydrated K+ (6–8 Å) then gave an effective radius for the entrance to the inner vestibule of 8–10 Å. Such a functionally wide entrance to the inner vestibule together with our observation that even small concentrations of sugar in the inner vestibule reduce unitary current suggest that a wide inner vestibule is required for the large conductance of BK channels.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3