Effects of ionic strength on gating and permeation of TREK-2 K2P channels

Author:

Conrad Linus J.ORCID,Proks Peter,Tucker Stephen J.ORCID

Abstract

In addition to the classical voltage-dependent behavior mediated by the voltage-sensing-domains (VSD) of ion channels, a growing number of voltage-dependent gating behaviors are being described in channels that lack canonical VSDs. A common thread in their mechanism of action is the contribution of the permeating ion to this voltage sensing process. The polymodal K2P K+ channel, TREK2 responds to membrane voltage through a gating process mediated by the interaction of K+ with its selectivity filter. Recently, we found that this action can be modulated by small molecule agonists (e.g. BL1249) which appear to have an electrostatic influence on K+ binding within the inner cavity and produce an increase in the single-channel conductance of TREK-2 channels. Here, we directly probed this K+-dependent gating process by recording both macroscopic and single-channel currents of TREK-2 in the presence of high concentrations of internal K+. Surprisingly we found TREK-2 is inhibited by high internal K+ concentrations and that this is mediated by the concomitant increase in ionic-strength. However, we were still able to determine that the increase in single channel conductance in the presence of BL1249 was blunted in high ionic-strength, whilst its activatory effect (on channel open probability) persisted. These effects are consistent with an electrostatic mechanism of action of negatively charged activators such as BL1249 on permeation, but also suggest that their influence on channel gating is complex.

Funder

wellcome trust

biotechnology and biological sciences research council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3