Pharmacological Dissection and Distribution of NaN/Nav1.9, T-type Ca2+ Currents, and Mechanically Activated Cation Currents in Different Populations of DRG Neurons

Author:

Coste Bertrand1,Crest Marcel1,Delmas Patrick1

Affiliation:

1. Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique, UMR 6150, Faculté de Médecine, IFR Jean Roche, 13916 Marseille Cedex 20, France

Abstract

Low voltage–activated (LVA) T-type Ca2+ (ICaT) and NaN/Nav1.9 currents regulate DRG neurons by setting the threshold for the action potential. Although alterations in these channels have been implicated in a variety of pathological pain states, their roles in processing sensory information remain poorly understood. Here, we carried out a detailed characterization of LVA currents in DRG neurons by using a method for better separation of NaN/Nav1.9 and ICaT currents. NaN/Nav1.9 was inhibited by inorganic ICa blockers as follows (IC50, μM): La3+ (46) > Cd2+ (233) > Ni2+ (892) and by mibefradil, a non-dihydropyridine ICaT antagonist. Amiloride, however, a preferential Cav3.2 channel blocker, had no effects on NaN/Nav1.9 current. Using these discriminative tools, we showed that NaN/Nav1.9, Cav3.2, and amiloride- and Ni2+-resistant ICaT (AR-ICaT) contribute differentially to LVA currents in distinct sensory cell populations. NaN/Nav1.9 carried LVA currents into type-I (CI) and type-II (CII) small nociceptors and medium-Aδ–like nociceptive cells but not in low-threshold mechanoreceptors, including putative Down-hair (D-hair) and Aα/β cells. Cav3.2 predominated in CII-nociceptors and in putative D-hair cells. AR-ICaT was restricted to CII-nociceptors, putative D-hair cells, and Aα/β-like cells. These cell types distinguished by their current-signature displayed different types of mechanosensitive channels. CI- and CII-nociceptors displayed amiloride-sensitive high-threshold mechanical currents with slow or no adaptation, respectively. Putative D-hair and Aα/β-like cells had low-threshold mechanical currents, which were distinguished by their adapting kinetics and sensitivity to amiloride. Thus, subspecialized DRG cells express specific combinations of LVA and mechanosensitive channels, which are likely to play a key role in shaping responses of DRG neurons transmitting different sensory modalities.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3