Functional consequences of lidocaine binding to slow-inactivated sodium channels.

Author:

Balser J R1,Nuss H B1,Romashko D N1,Marban E1,Tomaselli G F1

Affiliation:

1. Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA. jrbalser@welchlink.welch.jhu.edu

Abstract

Na channels open upon depolarization but then enter inactivated states from which they cannot readily reopen. After brief depolarizations, native channels enter a fast-inactivated state from which recovery at hyperpolarized potentials is rapid (< 20 ms). Prolonged depolarization induces a slow-inactivated state that requires much longer periods for recovery (> 1 s). The slow-inactivated state therefore assumes particular importance in pathological conditions, such as ischemia, in which tissues are depolarized for prolonged periods. While use-dependent block of Na channels by local anesthetics has been explained on the basis of delayed recovery of fast-inactivated Na channels, the potential contribution of slow-inactivated channels has been ignored. The principal (alpha) subunits from skeletal muscle or brain Na channels display anomalous gating behavior when expressed in Xenopus oocytes, with a high percentage entering slow-inactivated states after brief depolarizations. This enhanced slow inactivation is eliminated by coexpressing the alpha subunit with the subsidiary beta 1 subunit. We compared the lidocaine sensitivity of alpha subunits expressed in the presence and absence of the beta 1 subunit to determine the relative contributions of fast-inactivated and slow-inactivated channel block. Coexpression of beta 1 inhibited the use-dependent accumulation of lidocaine block during repetitive (1-Hz) depolarizations from -100 to -20 mV. Therefore, the time required for recovery from inactivated channel block was measured at -100 mV. Fast-inactivated (alpha + beta 1) channels were mostly unblocked within 1 s of repolarization; however, slow-inactivated (alpha alone) channels remained blocked for much longer repriming intervals (> 5 s). The affinity of the slow-inactivated state for lidocaine was estimated to be 15-25 microM, versus 24 microM for the fast-inactivated state. We conclude that slow-inactivated Na channels are blocked by lidocaine with an affinity comparable to that of fast-inactivated channels. A prominent functional consequence is potentiation of use-dependent block through a delay in repriming of lidocaine-bound slow-inactivated channels.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3