Affiliation:
1. Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
2. Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
Abstract
Ion channels play important roles in fundamental biological processes, such as electric signaling in cells, muscle contraction, hormone secretion, and regulation of the immune response. Targeting ion channels with drugs represents a treatment option for neurological and cardiovascular diseases, muscular degradation disorders, and pathologies related to disturbed pain sensation. While there are more than 300 different ion channels in the human organism, drugs have been developed only for some of them and currently available drugs lack selectivity. Computational approaches are an indispensable tool for drug discovery and can speed up, especially, the early development stages of lead identification and optimization. The number of molecular structures of ion channels has considerably increased over the last ten years, providing new opportunities for structure-based drug development. This review summarizes important knowledge about ion channel classification, structure, mechanisms, and pathology with the main focus on recent developments in the field of computer-aided, structure-based drug design on ion channels. We highlight studies that link structural data with modeling and chemoinformatic approaches for the identification and characterization of new molecules targeting ion channels. These approaches hold great potential to advance research on ion channel drugs in the future.
Funder
Open Access Publishing Fund of Leipzig University
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献