Role of an S4-S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker.

Author:

Tang L1,Kallen R G1,Horn R1

Affiliation:

1. Department of Physiology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.

Abstract

A pair of conserved methionine residues, located on the cytoplasmic linker between segments S4 and S5 in the fourth domain of human heart Na channels (hH1), plays a role in the kinetics and voltage dependence of inactivation. Substitution of these residues by either glutamine (M1651M1652/QQ) or alanine (MM/AA) increases the inactivation time constant (tau) at depolarized voltages, shifts steady-state inactivation (h infinity) in a depolarized direction, and decreases the time constant for recovery from inactivation. The data indicate that the mutations affect the rate constants for both binding and unbinding of a hypothetical inactivation particle from its binding site. Cytoplasmic application of the pentapeptide KIFMK in Na channels mutated to remove inactivation produces current decays resembling inactivation (Eaholtz, G., T. Scheuer, and W.A. Catterall. 1994. Neuron. 12: 1041-1048.). KIFMK produces a concentration-dependent, voltage-independent increase in the decay rate of MM/QQ and MM/AA currents at positive membrane potentials (Ki approximately 30 microM), while producing only a small increase in the decay rate of wild-type currents at a concentration of 200 microM. Although MM/QQ inactivates approximately 2.5-fold faster than MM/AA in the absence of peptide, the estimated rate constants for peptide block and unblock do not differ in these mutants. External Na+ ions antagonize the block by cytoplasmic KIFMK of MM/AA channels, but not the inactivation kinetics of this mutant in the absence of peptide. The effect of external [Na+] is interpreted as a voltage-dependent knock-off mechanism. The data provide evidence that KIFMK can only block channels when they are open and that peptide block does not mimic the inactivation process.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3