The Hodgkin‐Huxley‐Katz Prize Lecture: A Markov model with permeation‐dependent gating that accounts for resurgent current of voltage‐gated Na channels

Author:

Raman Indira M.1ORCID

Affiliation:

1. Department of Neurobiology Northwestern University Evanston IL USA

Abstract

AbstractMany neurons that fire high‐frequency action potentials express specialized voltage‐gated Na channel complexes that not only conduct transient current upon depolarization, but also pass resurgent current upon repolarization. The resurgent current is associated with recovery of transient current, even at moderately negative potentials where fast inactivation is usually absorbing. The combined results of many experimental studies have led to the hypothesis that resurgent current flows upon repolarization when an endogenous blocking protein that occludes open channels at depolarized potentials is expelled by inwardly permeating Na ions. Additional observations have suggested that the position of the voltage sensor of domain IV regulates the affinity of the channel for the putative blocker. To test the effectiveness of a kinetic scheme incorporating these features, here we develop and justify a Markov model with states grounded in known Na channel conformations. Simulations were designed to investigate whether including a permeation‐dependent unblocking rate constant and two open‐blocked states, superimposed on conformations and voltage‐sensitive movements present in all voltage‐gated Na channels, is sufficient to account for the unusual gating of channels with a resurgent component. Optimizing rate constant parameters against a wide range of experimental data from cerebellar Purkinje cells demonstrates that a kinetic scheme for Na channels incorporating the novel aspects of a permeation‐dependent unblock, as well as distinct high‐ and low‐affinity blocked states, reproduces all the attributes of experimentally recorded Na currents in a physiologically plausible manner. image

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3