Affiliation:
1. Department of Neurobiology Northwestern University Evanston IL USA
Abstract
AbstractMany neurons that fire high‐frequency action potentials express specialized voltage‐gated Na channel complexes that not only conduct transient current upon depolarization, but also pass resurgent current upon repolarization. The resurgent current is associated with recovery of transient current, even at moderately negative potentials where fast inactivation is usually absorbing. The combined results of many experimental studies have led to the hypothesis that resurgent current flows upon repolarization when an endogenous blocking protein that occludes open channels at depolarized potentials is expelled by inwardly permeating Na ions. Additional observations have suggested that the position of the voltage sensor of domain IV regulates the affinity of the channel for the putative blocker. To test the effectiveness of a kinetic scheme incorporating these features, here we develop and justify a Markov model with states grounded in known Na channel conformations. Simulations were designed to investigate whether including a permeation‐dependent unblocking rate constant and two open‐blocked states, superimposed on conformations and voltage‐sensitive movements present in all voltage‐gated Na channels, is sufficient to account for the unusual gating of channels with a resurgent component. Optimizing rate constant parameters against a wide range of experimental data from cerebellar Purkinje cells demonstrates that a kinetic scheme for Na channels incorporating the novel aspects of a permeation‐dependent unblock, as well as distinct high‐ and low‐affinity blocked states, reproduces all the attributes of experimentally recorded Na currents in a physiologically plausible manner.
image
Funder
National Institute of Neurological Disorders and Stroke
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献