Intracellular calcium movements during relaxation and recovery of superfast muscle fibers of the toadfish swimbladder

Author:

Nelson Frank E.123,Hollingworth Stephen1,Rome Lawrence C.12,Baylor Stephen M.1

Affiliation:

1. Department of Biology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104

2. Whitman Center, The Marine Biological Laboratory, Woods Hole, MA 02543

3. Department of Biology, Temple University, Philadelphia, PA 19122

Abstract

The mating call of the Atlantic toadfish is generated by bursts of high-frequency twitches of the superfast twitch fibers that surround the swimbladder. At 16°C, a calling period can last several hours, with individual 80–100-Hz calls lasting ∼500 ms interleaved with silent periods (intercall intervals) lasting ∼10 s. To understand the intracellular movements of Ca2+ during the intercall intervals, superfast fibers were microinjected with fluo-4, a high-affinity fluorescent Ca2+ indicator, and stimulated by trains of 40 action potentials at 83 Hz, which mimics fiber activity during calling. The fluo-4 fluorescence signal was measured during and after the stimulus trains; the signal was also simulated with a kinetic model of the underlying myoplasmic Ca2+ movements, including the binding and transport of Ca2+ by the sarcoplasmic reticulum (SR) Ca2+ pumps. The estimated total amount of Ca2+ released from the SR during a first stimulus train is ∼6.5 mM (concentration referred to the myoplasmic water volume). At 40 ms after cessation of stimulation, the myoplasmic free Ca2+ concentration ([Ca2+]) is below the threshold for force generation (∼3 µM), yet the estimated concentration of released Ca2+ remaining in the myoplasm (Δ[CaM]) is large, ∼5 mM, with ∼80% bound to parvalbumin. At 10 s after stimulation, [Ca2+] is ∼90 nM (three times the assumed resting level) and Δ[CaM] is ∼1.3 mM, with 97% bound to parvalbumin. Ca2+ movements during the intercall interval thus appear to be strongly influenced by (a) the accumulation of Ca2+ on parvalbumin and (b) the slow rate of Ca2+ pumping that ensues when parvalbumin lowers [Ca2+] near the resting level. With repetitive stimulus trains initiated at 10-s intervals, Ca2+ release and pumping come quickly into balance as a result of the stability (negative feedback) supplied by the increased rate of Ca2+ pumping at higher [Ca2+].

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3