Simulation of Ca2+ Movements within the Sarcomere of Fast-Twitch Mouse Fibers Stimulated by Action Potentials

Author:

Baylor Stephen M.1,Hollingworth Stephen1

Affiliation:

1. Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104

Abstract

Ca2+ release from the sarcoplasmic reticulum (SR) of skeletal muscle takes place at the triadic junctions; following release, Ca2+ spreads within the sarcomere by diffusion. Here, we report multicompartment simulations of changes in sarcomeric Ca2+ evoked by action potentials (APs) in fast-twitch fibers of adult mice. The simulations include Ca2+ complexation reactions with ATP, troponin, parvalbumin, and the SR Ca2+ pump, as well as Ca2+ transport by the pump. Results are compared with spatially averaged Ca2+ transients measured in mouse fibers with furaptra, a low-affinity, rapidly responding Ca2+ indicator. The furaptra ΔfCaD signal (change in the fraction of the indicator in the Ca2+-bound form) evoked by one AP is well simulated under the assumption that SR Ca2+ release has a peak of 200–225 μM/ms and a FDHM of ∼1.6 ms (16°C). ΔfCaD elicited by a five-shock, 67-Hz train of APs is well simulated under the assumption that in response to APs 2–5, Ca2+ release decreases progressively from 0.25 to 0.15 times that elicited by the first AP, a reduction likely due to Ca2+ inactivation of Ca2+ release. Recovery from inactivation was studied with a two-AP protocol; the amplitude of the second release recovered to >0.9 times that of the first with a rate constant of 7 s−1. An obvious feature of ΔfCaD during a five-shock train is a progressive decline in the rate of decay from the individual peaks of ΔfCaD. According to the simulations, this decline is due to a reduction in available Ca2+ binding sites on troponin and parvalbumin. The effects of sarcomere length, the location of the triadic junctions, resting [Ca2+], the parvalbumin concentration, and possible uptake of Ca2+ by mitochondria were also investigated. Overall, the simulations indicate that this reaction-diffusion model, which was originally developed for Ca2+ sparks in frog fibers, works well when adapted to mouse fast-twitch fibers stimulated by APs.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3